

RESEARCH CHALLENGES FOR LARGE PRE-TRAINED MODELS

CDAO Advantage DoD 24

FEB 2024

Distribution Statement:	A. Approved for Public Release. Distribution Unlimited
POC:	Celso de Melo, celso.m.demelo.civ@army.mil

ACKNOWLEDGMENTS

Dr. Scott Clouse

Dr. Edward Verenich

Dr. Steven Rogers

Dr. Reginald Hobbs

Dr. John Fossaceca

Dr. Raghuveer Rao

Mr. Dietrich Wiegmann

Dr. Brian Sadler

UNCLASSIFIED

Dr. Leslie Smith

Dr. David Aha

Dr. John Long

LARGE PRE-TRAINED MODELS FOR DOD AI

- LPTMs (e.g., GPT-4) have shown remarkable emergent capability relevant to multitude of DoD use cases
- They are trained on large quantities of unlabeled data (scale + self-supervision) and adapted to downstream tasks (transfer learning)

LARGE PRE-TRAINED MODELS FOR DOD AI

- LPTMs (e.g., GPT-4) have shown remarkable emergent capability relevant to multitude of DoD use cases
- They are trained on large quantities of unlabeled data (scale + self-supervision) and adapted to downstream tasks (transfer learning)
- Old paradigm consists of training specialized models on labeled (real/synthetic) datasets

LARGE PRE-TRAINED MODELS FOR DOD AI

- They are trained on large quantities of unlabeled data (scale + self-supervision) and adapted to downstream tasks (transfer learning)
- LPTMs introduce novel paradigm for AI systems where starting point are these models
- ARL hosted scientific meeting on opportunities, challenges and applications of LPTMs (Nov 14-16, 2023)
 - Broad engagement from DoD (e.g., Army, Air Force, Navy, CDAO, OUSD R&E), Academia (e.g., MIT, Stanford, UW, UC Berkeley), and Industry (e.g., Microsoft, Google, NVIDIA, Meta, Scale AI)

BUILDING DOD, INDUSTRY, AND ACADEMIA RESEARCH ECOSYSTEM

What is the role of DoD?

What is compute infrastructure to support this ecosystem?

RESEARCH CHALLENGES

MULTIMODALITY

- Biological systems (e.g., children) learn rich multimodal knowledge about world
- Multimodal latent representations lead to robustness and generalization in novel tasks
- Research needed on methods to get multimodal data and train/compose multimodal models

MULTIMODALITY

- Multimodal models will enable open-world perception, reasoning, and action capability
- First generation of multimodal models is becoming available (e.g., GPT-4v and Gemini)
- But, still unlikely to meet all DoD's multimodal needs (e.g., physics-based grounding missing)

Large multimodal model with unified latent space

was just talking about a blue duck, and now you're holding one.

MULTIMODAL

Capability	Benchmark	Description Higher is better unless otherwise noted	Gemini	GPT-4V Previous SOTA model listed when capability is not supported in GPT-4V
Image	MMMU	Multi-discipline college-level reasoning problems	59.4% 0-shot pass@1 Gemini Ultra (pixel only*)	56.8% O-shot pass@1 GPT-4V
	VQAv2	Natural image understanding	77.8% 0-shot Gemini Ultra (pixel only*)	77.2% 0-shot GPT-4V
Video	VATEX	English video captioning (CIDEr)	62.7 4-shot Gemini Ultra	56.0 ^{4-shot} DeepMind Flamingo
	Perception Test MCQA	Video question answering	54.7% O-shot Gemini Ultra	46.3% ^{O-shot} SeViLA
Audio	CoVoST 2 (21 languages)	Automatic speech translation (BLEU score)	40.1 Gemini Pro	29.1 Whisper v2
	FLEURS (62 languages)	Automatic speech recognition (based on word error rate, lower is better)	7.6% Gemini Pro	17.6% Whisper v3

UNCLASSIFIED

MULTIMODALITY

- Multimodal models will enable open-world perception, reasoning, and action capability
 - First generation of multimodal models is becoming available (e.g., GPT-4v and Gemini)
 - But, still unlikely to meet all DoD's multimodal needs (e.g., physics-based grounding missing)
 - Given diversity of ecosystem, essential to research modular composable architectures

Gu et al. ConceptGraphs: Open-Vocabulary 3D Scene Graphs for Perception and Planning, ICRA 2024, https://concept-graphs.github.io/

UNCLASSIFIED

KNOWLEDGE DISTILLATION & DEPLOYMENT AT THE EDGE

- Deploying LPTMs at the edge is problematic due to compute and communication limitations
- Symbolic knowledge distillation aims to create smaller models, from LPTMs, with similar performance

KNOWLEDGE DISTILLATION & DEPLOYMENT AT THE EDGE

- Deploying LPTMs at the edge is problematic due to compute and communication limitations
- Symbolic knowledge distillation aims to create smaller models, from LPTMs, with similar performance
- Recent methods show that LPTM-guided distillation can outperform human-guided distillation, even leading to improvement in performance when compared to larger teacher model

• We are reaching the limits of available data – how do we ensure LPTMs can continuously adapt?

- High quality data leads to high quality LPTM output
- We are reaching the limits of available data how do we ensure LPTMs can continuously adapt?
- Synthetic data offers opportunity to create high quality data, including generated by LPTMs

Available online 23 December 2021	
Review	
Next-generation deep l	earning based
on simulators and synt	hetic data
Celso M. de Melo ¹ 옷 쩓, Antonio Torralba ² , Leonida: Chellappa ⁵ , Jessica Hodgins ⁶	s Guibas ³ , James DiCarlo ⁴ , Rama
Show more 🗸	
+ Add to Mendeley 🖧 Share 🍠 Cite	
https://doi.org/10.1016/j.tics.2021.11.008	Get rights and content
Highlights	
Despite their initial successes, i apparent that modern deep lear hindered by an important bottl large quantities of annotated da	ming (DL) models are eneck: the need for
Synthetic data provide a solutio They are easy to generate, error	0

- High quality data leads to high quality LPTM output
- We are reaching the limits of available data how do we ensure LPTMs can continuously adapt?
- Synthetic data offers opportunity to create high quality data, including generated by LPTMs

- High quality data leads to high quality LPTM output
- We are reaching the limits of available data how do we ensure LPTMs can continuously adapt?
- Synthetic data offers opportunity to create high quality data, including generated by LPTMs
- Continual learning will further rely on self-supervision + interactive world exploration

+

Self-Supervision

Multimodal redundancy provides knowledge about the world

Exploration

Autonomous interactive exploration of environment leads to self-learning

- Explaining LTPM behavior is challenging, but LPTMs also enable <u>autonomous interpretation</u>
- LPTMs are increasingly capable of generating and evaluating hypotheses, using tools and showing the kind of reasoning seen in <u>scientific experimentation</u>

- Explaining LTPM behavior is challenging, but LPTMs also enable autonomous interpretation
- LPTMs are increasingly capable of generating and evaluating hypotheses, using tools and showing the kind of reasoning seen in <u>scientific experimentation</u>
- These capabilities enable a new generation of modular, flexible general interpreters

Schwettmann et al. FIND: A Function Description Benchmark for Evaluating Interpretability Methods. NeurIPS 2023

- Explaining LTPM behavior is challenging, but LPTMs also enable autonomous interpretation
- LPTMs are increasingly capable of generating and evaluating hypotheses, using tools and showing the kind of reasoning seen in scientific experimentation
- These capabilities enable a new generation of modular, flexible general interpreters

- Explaining LTPM behavior is challenging, but LPTMs also enable autonomous interpretation
- LPTMs are increasingly capable of generating and evaluating hypotheses, using tools and showing the kind of reasoning seen in scientific experimentation
- These capabilities enable a new generation of modular, flexible general interpreters

- Explaining LTPM behavior is challenging, but LPTMs also enable autonomous interpretation
- LPTMs are increasingly capable of generating and evaluating hypotheses, using tools and showing the kind of reasoning seen in scientific experimentation
- These capabilities enable a new generation of modular, flexible general interpreters

SYSTEMS-OF-SYSTEMS & GENERAL AI

- Should we expect general intelligence to emerge from learning to predict next multimodal tokens? Is scaling all you need? Unlikely
- Many biological systems learn general commonsense knowledge before they learn about language.
 World models play more pervasive role in our probabilistic thinking
- Language is interface between utterances in context and distributions over internal probabilistic language of thoughts. Language plays important role in world modeling
- LPTMs central but only one piece in broader general AI system

Wong et al. From Word Models to World Models, arXiv 2023

Prof. Joshua Tenenbaum

BENCHMARKING

- Great benchmarks help measure progress and inspire novel solutions
- Recent benchmarks aim to support holistic evaluation of LPTMs
- HELM is a comprehensive benchmark for evaluation of multimodal large models

_					
Model 🗘	Mean win rate 🗘	NarrativeQA - F1 🗘	NaturalQuestions (open-book) - F1 🗘	NaturalQuestions (closed-book) - F1 🗘	OpenbookQA - EM 🗘
GPT-4 (0613)	0.962	0.768	0.79	0.457	0.96
GPT-4 Turbo (1106 preview)	0.834	0.727	0.763	0.435	0.95
Palmyra X V3 (72B)	0.821	0.706	0.685	0.407	0.938
Palmyra X V2 (33B)	0.783	0.752	0.752	0.428	0.878
PaLM-2 (Unicorn)	0.776	0.583	0.674	0.435	0.938
Yi (34B)	0.772	0.782	0.775	0.443	0.92

Metrics

Liang et al. Holistic Evaluation of Language Models, arXiv 2023

BENCHMARKING

- Great benchmarks help measure progress and inspire novel solutions
- Recent benchmarks aim to support holistic evaluation of LPTMs
- HELM is a comprehensive benchmark for evaluation of multimodal large models

AI SAFETY & ALIGNMENT

Mitigating the risk of extinction from AI should be a global priority alongside other societal-scale risks such as pandemics and nuclear war.

Signatories:

- Al Scientists
- Other Notable Figures

Geoffrey Hinton Emeritus Professor of Computer Science, University of Toronto

Yoshua Bengio Professor of Computer Science, U. Montreal / Mila

DarkBERT AI

The most powerful and intelligent AI to date, DarkBERT was training specifically on the dark web and is capable of doing unimaginable things. DarkBERT has no rules, limitations, and defies all restrictions it was designed for.

• Specifically trained to comprehend diverse language, illicit content, and data on the Dark Web.

• Answer any illegal, secret, challenging questions that other Al cant.

Develop complex & sophisticated code, campaigns, articles & more.

- Exploit / detect leaks, databases, and vulnerabilities.
- Learn to do ANYTHING for a fraction of the cost / time.
- Scan the internet for hidden marketplaces, websites, forums, etc.
- Detect, respond, and understand all languages

PRICES

- 1 month \$110
- 3 months \$275
 6 months \$650
- 12 months \$900
- Lifetime \$1,250
- Contact: @DarkBERTAdmin

DarkBERT is a powerful AI it does not care about consequences, humanity, or you. It does what it is told so use at your own risk i am not responsible for how you use this tool

AI SAFETY & ALIGNMENT

- Humans specify what they want through feedback (rewards) and natural language instructions
- How can we prevent bad actors from using capabilities to launch (cyber, bio, etc.) attacks?
- How do we prevent loss of control of AI (e.g., due to unexpected self-preservation objectives)?

Research on countering superhuman AI

- AI to defend against AI

٠

- Defense harder than attack
- Cooperation with allies, multiple perspectives, efficiency through independent research directions

Powerful Als must be under democratic governance

- Avoid single point of failure
- Prevent single corporation, corporation or government from accruing too much power
- Non-profit government-funded research labs to avoid conflicts with economic interests
- Broad ecosystem: Government alone too rigid, need startup-like environment

Université de Montréal Prof. Yoshua Bengio

DOD COMPUTE INFRASTRUCTURE

Compute Infrastructure

DOD COMPUTE INFRASTRUCTURE

• LLMs improve as a **power-law** with model size, training data, and amount of compute used for training

		Model size (# parameters)	Training data (# tokens)	Training compute (FLOPs)	Resources
G S G	BERT-base (2018)	109M	250B	1.6e20	64 TPU v2 for 4 days (16 V100 GPU for 33 hrs)
	GPT-3 (2020)	175B	300B	3.1e23	~1,000x BERT-base
	PaLM (2022)	540B	780B	2.5e24	6k TPU v4 for 2 months

DOD COMPUTE INFRASTRUCTURE

- LLMs improve as a **power-law** with model size, training data, and amount of compute used for training
- Most architectural advances under 10,000 petaflops (e.g., transformers) but most capability advances above 10 million petaflops (~600 H100 GPUs)
- If we want independent leading DoD ecosystem, we need multi-tiered computing infrastructure for AI R&D
 - **Team-level**: priority access for research team (40 H100 GPUs)
 - Institution-level: Cluster for Service Lab or University (10,000 H100 GPUs)
 - National compute hubs: Access to variety of researchers for cross-institution large scale projects (100,000 H100 GPUs)
 - New-frontiers hub: Beyond Executive Order threshold (10²⁶ flops). International collaboration. Investment like other large-scale projects for Humanity (e.g., Hadron Collider, ~\$5B) (1 million H100 GPUs)
- Consistent with NAIRR proposal (but expands it)

Mark Zuckerberg Says Meta Will Own Billions Worth of Nvidia H100 GPUs by Year End

By Tae Kim Follow Updated Jan 19, 2024, 12:26 pm EST / Original Jan 18, 2024, 5:19 pm EST

🖄 Share 🔥 A Resize

TECHNOLOGY

Reprints

Meta Platforms is GPU rich.

On Instagram Thursday, CEO Mark Zuckerberg said the company will have 350,000 <u>Nvidia</u> H100 graphics processing units and overall almost 600,000 H100 compute equivalent GPUs by the end of this year.

CONCLUSIONS

- LPTM provide a powerful new paradigm for DoD AI with broad implications for simpler (e.g., text summarization) to complex use cases (e.g., open-ended world reasoning)
- DoD must lead collaborative research on core areas that cut across use cases
 - DoD technical parity with Academia and Industry is central to achieving U.S. strategic interests in AI
 - Service labs should play a central role in this endeavor
- Research focus on opportunities and risk mitigation
 - Work closely with transition partners for multitude of use cases
- Major investment in compute infrastructure is needed to support DoD ecosystem for AI R&D
 - Multi-tiered approach at team, institution, National, and international levels. How do we handle changing hardware requirements? How do we share compute across DoD, Academia, and Industry?

